Materials Security, Productivity and New Business Models

Nicholas Morley Bonn, 29th October 2012

Policy Context

Materials Criticality across all Strategic Energy Technologies

Element	Rating
Rare Earths: Dy, Eu, Tb, Y	High
Rare Earths: Pr, Nd	High
Gallium	High
Tellurium	High
Graphite	High-Medium
Rhenium	High-Medium
Indium	High-Medium
Platinum	High-Medium
Rare Earths: La, Ce, Sm, Gd	Medium
Cobalt	Medium
Tantalum	Medium
Niobium	Medium
Vanadium	Medium
Tin	Medium
Chromit	Medium
Selenium	Medium-Low
Lithium	Medium-Low
Hafnium	Medium-Low
Molybdenum	Medium-Low
Silver	Medium-Low
Nickel	Low
Gold	Low
Copper	Low
Cadmium	Low

Source: Oakdene Hollins Estimates

Significance Screening Results

Critical Materials in PV in

The UK, 2011

Fraction for re-use

Gallium: 0 kg
Magnesium 0 kg
Indium: 0 kg
REa 0 kg
Silver 0 kg
REa 0 kg
Silver 18 kg
Tim: 463 kg

Use

Co

Controlled disposal

Gallium: 240 kg
Magnesium: 107000 kg
REa 0 kg
Silver 18 kg
Tim: 463 kg

Uncontrolled waste

Gallium: 240 kg
Magnesium: 107000 kg
REa 0 kg
Silver 18 kg
Tim: 928200 kg

Use

Uncontrolled waste

Gallium: 240 kg
Magnesium: 10 kg
Magnesium: 0 kg
Magnesium: 0 kg
Magnesium: 10 kg

Source: Oakdene Hollins

Responses to Materials Criticality

Data collection and dissemination

Procurement and stockpiling

Trade and international co-operation

Primary production

Design and innovation

Resource
efficiency
strategies
(e.g. recycling)

Source: Oakdene Hollins

Policies for the recovery of strategic materials

- Improved collection
- Advanced sorting techniques
- Implementation of new recycling technology
- Linking agents within the supply chain
- Design for disassembly
- More sophisticated waste recovery targets
- Alignment and enforcement of regulations
- Remanufacturing and reuse

Key product groups for the "EU Critical 14"

	Antimony	Beryllium	Cobalt	Fluorspar	Gallium	Germanium	Graphite	Indium	Magnesium	Niobium	PGMs	REES	Tantalum	Tungsten
Auto/aero components														
Batteries														
Catalysts														
Cemented carbide tools														
Chemicals														
Construction														
Electrical equipment														
Electronics/IT														
Flame retardants														
Optics														
Packaging														
Steel & steel alloys														

Source: Oakdene Hollins

Red = product life extension practices in use

Which metals and where?

Component	Element	Global recycling rate			
	Antimony	1-10%			
	Beryllium	<1%			
	Copper	>50%			
Printed	Gallium	<1%			
Circuit	Germanium	<1%			
Boards	Gold	>50%			
	Silver	>50%			
	Platinum Group Metals	>50%			
	Tantalum	<1%			
Flat Panel	Indium	<1%			
Displays					
Hard Disk	Ruthenium (PGM)	10-25%			
Drives	Rare Earth Elements	<1%			

Recycling

Source: UNEP/EU Working document

Metal Content?

- Example of mobile phone (excluding batteries):
 - 12.6% Copper
 - -0.35% Silver
 - 340g/t Gold
 - 144g/t Palladium
 - Also Iron, Aluminium, Nickel, Tin, Zinc...
- Far richer than conventional ores
- Need for improved collection

Source: OECD

Precious Metals: Example of Boliden

- Copper Smelters:
 - Rönnskär (Sweden)
 - Harjavalta (Finland)
- Rönnskär processed 60kt electronic scrap in 2011
- Expanding to 120kt capacity – become world's largest
- Focus on copper and precious metal recovery

Precious Metals: Example of Boliden

Boliden Copper/WEEE Smelting Revenues, 2011e, (\$m)

Source: Oakdene Hollins for ILZSG/ICSG/INSG

Analysis of WEEE Recovery Opportunities

- Many metals used in very small quantities on a PCB
- Current practice of shredding for recovery:
 - Copper and precious metals already recovered
 - Rare earths lost in ferrous fraction
 - Others are quite reactive lost in slag
- Some niche opportunities are possible:
 - Rare earth magnets in hard disk drives
 - Rare earth phosphor lighting
 - Indium in flat panel displays

Rare Earth Magnet Recovery

- Hard disk drives (HDD) account for 1/3 of RE magnet demand
- Processes to cut HDD & remove RE magnets for recycling
- Need to segregate, not shred with WEEE to recover RE
- Data security as economic incentive for collection & sorting
- Wind Turbines & (H)EVs in long term due to length of lifetimes

Source: Oakdene Hollins for

Indium Recovery from Flat Panel Displays

- Over half of primary Indium used to make FPDs
- Recycling of Indium process waste common and efficient
- Easy to separate FPDs from WEEE as easily recognisable and need to remove mercury
- Pilot scale technologies being developed to remove ITO – dismantling and dissolution
- Medium timeframe for FPDs in waste; solar PV for long term

Beyond Recovery to Reuse

- Resource opportunities:
 - Use of others' waste & typically low cost feedstock
 - Protect against fluctuating resource markets
 - Utilise difficult to recover materials
- Whole life service:
 - Encourages long term customer base
 - Value added business model
- Environmental / Social benefits:
 - Energy, material and water costs reduced
 - Cost reduction for procurers
 - Carbon savings
 - Green growth and skilled job creation

Remanufacturing

"The practice of taking an end-of-life artefact and returning it to as-new condition, with warranty to match" Ijomah

- A long industrial history
- Origins in the military
- Worth c. £5bn, 50,000 people in UK
- Policy drivers in waste prevention

Value of remanufacturing and reuse in the UK

Source: Oakdene Hollins, 2010

Reuse of ICT equipment in the UK, 2009

Туре	Units sold (000)	Refurbished (000)	Reused (000)
Desktops	2,750	49.5	764**
Home Users	917		
Business Users	1,833		
Laptops	8,250	148.5	382
Home Users	4,950		
Business Users	3,300		
Servers	3,678		183
Total	11,000	220	1,150

Source: ONS Product sales and trade, 2009

^{**} this number includes monitors and base units sold separately

Remanufacturing potential in wind power

Potential for remanufacture

Beneficial Features	Detrimental Features
High intrinsic value	Poor design for assembly/disassembly
Good durability	Proliferation of materials in construction
Low to moderate technological evolution	Status-dependant, fashionable items
Cores readily available	Poor perception of standards/branding
Integrated sales/service/upgrade options	Low price of new goods
Design information available	Craft skill shortage

"Four Golden Rules of Remanufacturing"

- Determine optimal mix of: rate of product evolution, value, and re-constructability
- Remanufacturing is at its most successful when most hidden
- Reduce customer risk e.g. use standards
- Recovery of core is key to growth

Remanufacturing decision tool

Conclusions

- Raw material concerns will remain part of the policy mix, extending to biotic as well as abiotic materials
- These concerns will give increased impetus to traceability/provenance innovations and to closed loop business models close to country markets
- Recycling methods for some critical materials exist but are often underdeveloped
- Many product groups using critical materials are suitable for product life extension and remanufacturing/reuse
- Remanufactured products are often best embedded in service business models and use standards to encourage reuse whilst help conserve resources and create green growth

